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DETERMINATION OF DISTRIBUTION FUNCTIONS FOR THE 

CHARACTERISTICS OF HEAT AND MASS EXCHANGE PROCESSES 

BY MEANS OF BOLOMETRIC CONVERTERS 

A. B. Katrich and V. V. Kamyshan UDC 536.5:621:317.794 

We propose a method for reconstructing the distribution functions of temperature over the cross section 
of a flow on the basis of data derived from bolometers. We have optimized the algorithm based on 
approximation of the distribution functions by bicubic splines with subsequent pseudoconversion of the 
matrix equation. 

The effectiveness with which bolometric converters can be utilized in the diagnostics of  heat and mass exchange 

processes is associated with the high stability of  these bolometers to thermal and chemical actions, to their mechanical 

strength, and to the simplicity of recording the response. For the moment,  the basic area for the use of  such converters 

is the measurement of  integral characteristics, i.e., the average velocity or temperature of  a flow, the total energy or power 
of radiation fluxes or streams of charged particles. For example, in order to measure the energy of laser emission, a converter 

has the form of a grid of mutually parallel cylindrical bolometers positioned perpendicular to the radiation flux, and these 

bolometers are connected in series to a device which recorded the change in grid resistance [ 1 ]. With the aid of  a similar 

design it is possible to measure the temperature of  a stream of gas or its velocity on the basis of  the reduction in resistance 
in the bolometers heated by the current. 

An important feature of these measuring converters (as described here) is the insignificant interaction with the 

flow being diagnosed, and this is proportional to the ratio of  the bolometer diameter to the distance between them (the 

spacing of  the grid), as well as the possibility of using such converters in flows of large cross section. In these energy 
measuring devices [1] the losses are on the order of 10 -2-10-Swith a flow diameter of up to one meter. With a reduction 

in the bolometer diameter the time constant of  the response is also reduced (about 5 msec for platinum bolometers 10 

#m in diameter) and it becomes possible to record high-speed processes. 
However,  in the integrated diagnosis of  heat and mass exchange processes it becomes necessary to measure the 

distribution functions of  the physical quantities through the cross section of the flow. It is not through measurement 
of the total resistance [1 ] that additional information on the utilization of bolometric grid converters can be achieved, 
but rather from the increment in the resistance for each of the grid bolometers. The derived totality of  signals represents 

a projection of the temperature distribution function in the direction of the bolometer axes. In order to obtain the actual 

distribution it becomes necessary to solve an inverse problem of computational diagnostics, namely, to reproduce the 

sought function f rom the set of its projections (or affects) [2]. A unique feature of  this problem is the requirement that 

we introduce the smallest possible number of  perturbations, i.e., to optimize the number of projections and the bolometers 

within them. Estimates show that in real situations the number of  bolometer grids cannot exceed 10. 
Under the limited aspect conditions the existing a priori information is normally inadequate for effective application 

of the methods of integral transformation. The rriethod involving the expansion of the sought function f(x) over the basis 

of some finite-dimensional space {Sk}l N, x = (x 1, x2) is therefore fundamental: 
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fz(x) = ~ Vh&(X). 
k=l (l) 

After substitution of (1) into the original integral equation we derive the following system of linear algebraic equations: 

A Y = F  (2) 

with a rectangular projection matrix A. Here Y is the vector of  the sought expansion coefficients,  while the right- 

hand side F is the vector of the measured values for the signals from the bolometric converters. The problem of reproducing 
f(x) is substantially incorrect, owing to the angular and radial discreteness and measurement error both in the original 

formulation and in the algebraic form (2). The fundamental problem, therefore, involves selection of  the algorithm and 
the construction of  a limitational functional such that by means of this functional it becomes possible out of  the entire 

set of possible solutions for the integral equation to isolate the correctness sets which contains the solutions most probable 
from the physical standpoint. 

Out of physical considerations the constraint functional must include conditions of  nonnegativeness and the limiting 
constraint on the solution norm. The finiteness of the dimensions and spatial resolution of the converter provide for limiting 

conditions on the carrier of  the function itself and of  its spectrum within the limits of  error governed by the discreteness. 

The spatially localized basis functions with a uniformly diminishing spectrum correspond to such a functional. 

Basis splines of  various orders have been tested in this study, as well as the Gaussians and functions with a limited 

spectrum, when (1) satisfies the Kotel 'nikov theorem. The use of special bases, including orthogonal polynomials, is valid 

only under the conditions of  the hypothecated topological proximity of the basis functions and the possible solutions. 

Such bases effect ively isolate the correctness set, but markedly reduce the universality of  the algebraic method. 

For Sk(X), localized within the limits of the discreteness interval, the iteration algorithms are optimum in conjunction 
with a large number of  unknowns. Iteration solution of system (2) is accomplished in a parametric analyzer [3], defining 

the radiation intensity distribution function for technological lasers in a 24 x 24 image element grid. The use of  bilinear 
or bicubic splines [4] makes it possible for  the same spatial resolution to reduce the dimensionality of  the projection matrix 

and to apply direct-solution methods to system (2). The existence of a measurement error and the original inaccuracy 
in the problem do not guarantee compatibility of the system. Therefore,  the normal pseudosolution [5] was taken for 

Y, since it offered the smallest norm and minimized the discrepancy norm in (2). For pseudoconversion, we employed 
factoring of the form A = UP.V T, so that 

Y = A+F. (3) 

Here A + is the pseudoreciprocal A matrix, U and V are the orthogonal matrices; I3 is the diagonal matrix containing singular 
numbers a i in diminishing order. The process of solution consists of successive calculations of  the vectors D = UTF, Z 

with elements z i = di /a  i for  a i ~ 0 and z i = 0 for  a i = 0, and then the actual solution Y = VZ with calculation of fy(x) from 
(I). Such factoring of  the projection matrix makes it possible to study the conditionality of  system (2) by analyzing the 
distribution of  the singular numbers. 

Figure 1 shows the relationship between the reproduction error 

8y = IIf(x)-- fiY(x)l[~ 
fir (x)lle 

M 

for the function [(x)=/=Y. ~zmexp [--f~(x--'V,~) 2] for M = 2, 3 < 6, 0 _< a m ___ 1, for a basis of bicubic B splines. The least 
r r t=l  

error in the approximately identical overall number of bolometers corresponds to more uniform discreteness. With a small 
number of expansion elements N in (1) the discreteness rate is inadequate and the distortions of the spectrum are not 

offset by the excess number of equations. With an increase in N the approximation error diminishes; however, the 
computational error associated with the lack of original information, increases and predominates at some particular point. 
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Fig. 1. Reconstruction errors as a function of discreteness frequency. Curve 1) 4 projections, 

13 bolometers, 52 equations; 2) 8, 7, 56; 3) 6, 9, 54. 

Fig. 2. Effec t  of  rank limitation. Additive error in original data: 1) 0; 2) 0.03; 3) 0.06; 

4) 0.12. The dashed curve represents a multiplicative error of 0.I 2. 

The use of  a basis consisting of bilinear B splines yields analogous results, but because of the higher error of approximation 

the values of 6u are somewhat larger. 
According to estimates [5, 6], the error in the solution of (2) is proportional to the conditional number cond+A 

= Graax/O'min, where Grain is the least of  the singular numbers used in the solution of  the system. For all of  the matrices 
A considered here, the singular numbers initially diminish slowly, and then in the transition region their values fall by 

several orders to a level defined by the calculation error. When using singular numbers in (3) larger than ami n the derived 
solution will approximate the normal pseudosolution with a relative error on the order of  a -- trmin/Crraax. The rejection, 

therefore, of numbers a i < (7rain slightly increases the computational error in Y, but significantly improves the conditionality 
of the system. The cutoff  level must be matched to the error 6 F in the input data. With additive error in the original 

data the optimum cutoff  level ~ ~ 26 F is shown in Fig. 2. For multiplicative error the relationship is analogous, but 6y 

< 6 F in the range a ~ 0.05-0.25. 
The more cumbersome factoring operation for the projection matrix A is accomplished preliminarily on a universal 

computer. In actual work the results of  the factoring are utilized in the form of an existing pseudoreciprocal matrix A + 

or its components U T, E -1,v. The storage method is governed by the number of  singular numbers taken into consideration, 

by the high-speed action and volume of the memory in the computer-processed measurement complex. 
For the iteration methods a considerable gain is offered by the lowest-order splines as a consequence of  a reduction 

in the extent to which matrix A is filled. In certain converter configurations it is appropriate to calculate the indices 

and the magnitude of the nonnull elements of  the matrix at each interval. In comparison to the pseudoconversion algorithm 
the expenditure of machine time on the solution is not increased, and the required operative memory volume is significantly 

reduced. However,  owing to the growth in the approximation error and in the sensitivity to the selection of the initial 

approximation a more careful selection of the specific algorithm is necessary. 
Thus, in diagnostics involving the utilization of bolometric converters it is possible to reproduce the temperature 

distribution function over the cross section of  the flow in its approximation through bicubic splines with utilization of 
a pseudoconversion algorithm of the resulting matrix equation. The error due to discreteness and the reduction in the 

rank of the matrix system corresponds approximately for this method to the error in the measurement of  the original 
data, thus allowing us to determine the required number of projections and the discreteness rate. Realistically speaking, 
the reproduction quality for  100 expansion elements is satisfactory with 4- 8 grids, each of  which contains 6-15 bolometers. 
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FLUCTUATIONS IN THE RATE OF FLOW DURING 

FILTRATION OF POLYMER SOLUTIONS 

M. M. Khasanov and I. N. Yagubov UDC 542.67:541.6 

This article demonstrates the possibility of a loss of stability in steady-state regimes involved in the 
filtration of polymer solutions, and we present also the construction of a mathematical model on the 
basis of whose analysis we have ascertained the unique features of self-oscillations and stochastic 
oscillations which arise in the region of  instability. 

Nonlinear effects in the filtration of non-Newtonian media may lead to a loss of stability in the steady filtration 

regime [1-4]. We observed such phenomena in a number of  laboratory experiments in which we studied the filtration 

of polyacrylamide (PAA) solutions through a column filled with quartz sand. The permeability of  the porous medium 

with respect to air amounted to 3.1.10 -12 m 2. During the course of the experiment the pressures at the inlet and outlet 

of the column were maintained at constant levels and the flow rate of the fluid being fil tered was measured over a rather 

prolonged period of time. The experiments demonstrated that with small pressure differences a steady flow rate is established. 
But when some critical pressure difference &p, is attained (dependent on the PAA concentration in the solution) the steady 

filtration regimes lose stability, and we observe unattenuated fluctuations in the flow rate. As an example, Fig. I shows 
the flow rate for  PAA with a concentration of  0.075% as a function of time for the case in which Ap = 0.6 MPa. 

The fluctuations in the flow rate are irregular in nature. The level of  irregularity (chaos) can be evaluated on 

the basis of the Hausdorf  scale for  the curve Q --- Q(t). The quantity D is determined [5, 6] during the process of  measuring 

the length I on the curve Q = Q(t) by means of  dividers with an opening ~7. The measurements are started from the origin 
Pp. Describing a circle of  radius ~ with the center at P0, we mark the point P1 at which the curve initially moves out 

of the circle. The second point P2 is obtained when the center of  the circle is shifted to the point PI, etc. If  l(r/) is used 

to denote the length of  the resulting broken line PoP1P2 .... approximately describing the curve, the length of  the curve 
will be [7, 8]. 

As demonstrated by direct measurement, for the experimental curves Q = Q(t) with not overly small r/, l(t/) ~ e-'~. 

Consequently, the graph of the functions Q = Q(t) can be assumed to be fractal curves having the dimension D = 7 + 1. 
It is natural to assume that the larger the dimension of the experimental curve, the less orderly the process whose image 

is represented by this curve. Thus, for  the curve in Fig. 1 we have D = 1.40. We should take note of  the fact that after 
establishment of  the chaotic filtration regime any further  increase in the pressure difference will not lead to an increase, 

but rather to a decrease in the Hausdorf  dimension for the curves Q --- Q(t), which gives evidence of  the more orderly 
progress of the filtration process in the case of larger values of Ap. 
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